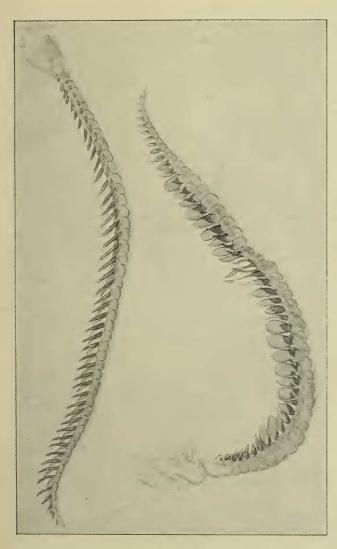
diesem Fall von den Eichen, des neuen Gebiets als verbreitungshindernder Faktor durch die gewonnenen Resultate ausgeschlossen wird und geologische, meteorologische u. a. Verhältnisse so gut wie gar nicht in Betracht kommen. Wie aber die heutige Verbreitung von C. kollari Hart. in Europa und dem Mediterrangebiet zeigt, ist die Anpassungsfähigkeit der Cynipide an das Klima eine recht grosse, oder, besser gesagt, die Abhängigkeit von dem Klima eine recht geringe, da sich das heutige Verbreitungsareal von etwa 35° n. Br. bis über 51° n. Br. erstreckt. Zwischen nahezu denselben Breitengraden sind auch die genannten asiatischen und amerikanischen Eichen heimisch, sodass also klimatische Verhältnisse einer späteren Einwanderung der Wespe kaum Hindernisse bieten.

Solche scheinen auf den ersten Blick vielmehr in der Unzulänglichkeit der Verbreitungsmittel zu liegen. Aber auch hier sind die Umstände für eine Weiterverbreitung nicht ungünstig zu nennen. Aktive Wanderungen sind in Anbetracht der geringen Fortbewegungsfähigkeit der Wespe für weite Entfernungen, um die es sich hier in erster Linie handelt, ausgeschlossen. Weit besser steht es für die Verbreitung der Galle mit der in ihr lebenden Larve durch passive Mittel. Hier dürfte vor allem der Mensch mit seinen modernen Verkehrsmitteln in Betracht zu ziehen sein. Durch Holz- und ähnliche Transporte von einem zum andern Kontinent können leicht Gallen zufällig verschleppt werden. Wie hoch dieses Verbreitungsmittel zu veranschlagen ist, zeigen die Beobachtungen von Kraepelin, der in Hamburg während dreier Jahre eine Einschleppung von über 500 Tierarten auf diesem Verbreitungswege konstatierte. Nicht zu unterschätzen ist auch die Verbreitung durch Wind und Wasser. Da die reifen kollari-Gallen nur lose an ihrer Anheftungsstelle sitzen, werden sie von einem stärkeren Wind leicht losgerissen; gelangen sie dadurch in einen Flusslauf oder ins Meer, so werden sie ohne Gefahr für die Larve meilenweit weggetragen. Dass tatsächlich Gallen vom Wasser fortgetragen werden, beweist eine Beobachtung von R. Heymons, der im April d. J. am Strande von Via Reggio an der oberitalienischen Küste häufig Gallen von Cynips quercus tozae Bosc angespült und auch noch im Wasser schwimmend fand,


Aus allen diesen Tatsachen geht hervor, dass die Bedingungen für eine Verbreitung von *Cynips kollari* Hart, über die heutigen Grenzen hinaus, selbst nach anderen Kontinenten, recht günstige zu nennen sind.

Die Belegstücke der von mir neu aufgefundenen Wirtspflanzen der kollari-Gallen befinden sich im Kgl. Zoologischen Museum zu Berlin, zum Teil auch im Kgl. Botanischen Museum zu Berlin-Dahlem.

Fühlerhypertrophie bei Lymantria. Von E. Lindner. (Mit 1 Abbildung)

(Mit 1 Abbildung.)
In einer Kreuzungskultur Lymantria disperg × var. japonica & meines verehrten Lehrers, des Herrn Professor Goldschmidt, dem ich an dieser Stelle für die gütige Ueberlassung des Präparates meinen besten Dank ausspreche, fand sich ein Q, dessen linker Fühler stark hypertrophisch war.*)

^{*)} Ich danke auch an dieser Stelle meinem lieben Freunde und Kollegen Hermann Poppelbaum für seine wertvolle Hilfe beim Durchsuchen der so zerstreuten entomologischen Literatur.

Der rechte Fühler war völlig normal. Die Missbildung des linken besteht im wesentlichen darin. dass sowohl eigentlichen Glieder als auch die Fiedern stark aufgeblasen sind. Am wenigsten verändert sind die Glieder an der Basis und die an der Spitze. Vergleicht man die beiden Fiederreihen, so zeigt sich, dass die hintere Reihe anscheinend auf Kosten der vorderen stärker ausgebildet wurde. Mit Ausnahme der merkwürdigen Stelle

etwas nach der Fühlermitte sind nämlich die Fiedern der Hinterreihe von der Basis an zunehmend und gegen die Spitze zu abnehmend stark aufgetrieben; dabei sind

sie seitlich abgeflacht, so dass sie in der Form vielleicht Johannisbrotkernen nicht unähnlich sehen. Die

Spitze hebt sich bei den am stärksten aufgeblasenen und etwas übernormal langen Fiedern gerade noch ab. Von den Fiedern der Vorderreihe erreicht keine die normale Länge; sie sind meist nur am Grunde etwas bauchig aufgeblasen und laufen dann gegen das Ende rasch spitz zu. Besonders auffallend ist die Fühlermitte. Da kommt plötzlich nach einer riesig grossen Fieder eine hornförmig gekrümmte; die nächste Fieder ist der vorausgehenden, letzten grossen, ähnlich, aber kleiner. Mit den beiden folgenden nimmt das Längenwachstum rasch zu, das 5. ist lang, ziemlich schmal und hat eine fast normal ausgebildete Spitze. Das nächste Glied ist fast das voluminöseste des ganzen Fühlers, dafür trägt es aber die schmalste und längste Fieder. Sie ist an der Basis aufgeblasen und hat eine normal aussehende Spitze; der mittlere Teil erscheint dagegen so stark ausgezogen, dass er in der Mitte eine dünnste Stelle zeigt. Aehnlich, aber kleiner ist die zugehörige vordere Fieder. Auf dieses Glied folgen nun 2 ziemlich kleine. Am ersten

sind die Fiedern noch den eben beschriebenen ähnlich, am 2. gehen sie etwas in die Breite und vom nächsten an treffen wir wieder die aufgeblasenen Fiedern. Sie wie ihre Glieder nehmen zunächst an Grösse

zu, gegen die Fühlerspitze erlangen sie fast normales Aussehen.

Peter Kosminsky bildet in den Zool, Jahrb. Bd. XXVII Abt. f. Syst, einen Fühler ebenfalls von L. dispar ab, der das Produkt eines Kälteexperiments ist. Er schreibt in der Arbeit: "Einwirkung äusserer Einflüsse auf Schmetterlinge" bezüglich des Fühlers, der dem von mir soeben beschriebenen sehr ähnlich sieht: Bemerkenswert ist die Fühlerform, die auf Tafel 17, Fig. 6 dargestellt ist. Die Fiedern an den Gliedern des Fühlers, die sich näher der Basis befinden und die Glieder selbst sind stark verbreitert. Zum Vergleich habe ich auf Tafel 17 einige Glieder eines normalen 2 abgebildet mit den breitesten Fiedern." Die Schuppchen an den veränderten Fühlern sind bei allen 2 verändert,... Etwas trägt zu dieser Veränderung der Fühler die Puppenhülle bei, welche beim Q bedeutend breiter ist als die Fühler. Man kann diese Erscheinung vielleicht folgendermassen erklären: Bei den Vorfahren von Lymantria dispar besassen die 9 Fühler mit grossen Fiedern, und das Merkmal hiervon erhielt sich an der Puppenhülle bis zum heutigen Tag. Vielleicht ist auch die Hülle kleiner (enger) geworden, aber nicht in so starkem Masse wie die Fiedern selbst. Der scharf ausgeprägte Geschlechtsdimorphismus stellt eine spätere Erscheinung dar, und es ist möglich, dass ehemals die & keine so prächtig entwickelteu Fühler besessen haben wie heutzutage."

In einer Fussnote heisst es weiter:

"Die etwas merkwürdige Form der Fühler, die auf Tafel 17 Fig. 6 dargestellt ist, wird leicht durch das Fehlen an Raum zur Entwicklung erklärt, die Hülle erwies sich als zu klein, und so folgte eine Auftreibung der Fiedern, welche nicht in die Länge wachsen konnten, und die Verbreiterung der Glieder. Das Auftreten kurzer, breiter Schuppen an den Fühlern kann man sich so erklären: Beim Wachstum fanden die Schuppen Schwierigkeiten infolge des starken Druckes der Fühler auf die Puppenhülle und konnten nicht die gehörige Länge erreichen. Die Veränderung an den Sensillae coelonicae hängt wahrscheinlich ebenso vom ungleichmässigen Wachstum ab, das durch Raummangel hervorgerufen wurde." In den Zoolog. Jahrb. XXX. Abt. f. Z. u. Physiol. der Tiere, pag. 327, Kosminsky: Weitere Untersuchungen über die Einwirkung äusserer Einflüsse auf Schmetterlinge, schreibt Verfasser: "Eine Veränderung der ganzen Körperform gelang es nur bei 2 9 von Stilpnotia salicis zu erreichen, welche im Lauf von 29 Tagen einer Abkühlung von 10-0° C. unterworfen wurden ... Die Beine und Palpen sind verkürzt und dafür aber bedeutend dicker . . . Die Fühler wurden nicht kleiner, wohl aber bedeutend dicker; die Fiedern wurden breiter (Taf. 6 Fig. 5) ... Alle Veränderungen der Fühler sowohl wie der Beine sind Neubildungen, in keinem Stadium der Puppe wurden solche Formen beobachtet."

Von einer Verbreiterung der Schuppen auf den Fiedern kann in unserem Falle nicht gesprochen werden, die Schuppen fallen nur dadurch, dass sie auf eine grössere Fläche verteilt sind, weniger auf. Vielleicht sind sie auch in grösserem Umfang rückgebildet. Es lässt sich dies schwer konstatieren, denn sie können ja auch ausgefallen sein. Die

zugehörigen Narben sind vorhanden.

In allen Fällen Kosminsky's handelt es sich um Veränderungen

durch niedrige Temperatur. In vorliegendem Fall ist das ziemlich ausgeschlossen. Die Tiere wurden nicht zu Temperaturexperimenten benutzt und es wäre nur denkbar, dass die Puppe mit der linken Seite, mit der Fühlerscheide, die ja gut wärmeleitende Glasplatte des Zuchtkastens berührte. Es ist dies jedoch sehr unwahrscheinlich. Dagegen spricht auch die merkwürdige Ausbildung der Fühlermitte. Leider konnte die Puppenhülle unter der grossen Zahl nicht mehr gefunden werden. Gerade die Fühlermitte lässt vermuten, dass bereits die Fühlerscheide abnormal war. Es ist aber auch denkbar, dass die Ausbildung dieser Stelle nur die Folge einer zufälligen Komplikation bildet, die mit der Hypertrophie gar nichts zu tun hat. Denn ich kann mich dem Eindruck nicht verschliessen, dass die Auftreibung der Fühlerelemente in unserem Fall doch sekundär ist und gleichzeitig mit dem sekundären Wachstum der Flügel erfolgt ist. Durch irgendwelche zufällige Ausbildung ist vielleicht in dem Fühler eine verstärkte Hämolymphleitung entstanden. die ein Wachstum bewirkte, wie es bei den Flügeln stattfindet. Aehnliche Auftreibungen im Flügelgeäder, die so stark werden können, dass ein Platzen stattfindet, habe ich selbst bei Pieris beobachtet. Es dürften dies analoge Erscheinungen sein, die vielleicht durch verschiedene Momente (in einem Fall niedrige Temperatur) ausgelöst werden können.

Proterogynie beim Prozessionsspinner (Cnethocampa pityocampa Schiff.)?

Von Erwin Lindner. Bei Pflanzen und Tieren ist Inzucht in der Natur eine seltene Erscheinung Wie Experimente und sonstige Beobachtungen gezeigt haben, ist der Grund dafür darin zu sehen, dass die Inzucht meist geschwächte Produkte ergibt. Es wird deshalb diese Art der Fortpflanzung durch die verschiedensten Mittel ausgeschaltet. Bei Pflanzen ist eines der häufigsten die Reifung der Geschlechtsprodukte ein und derselben Blüte zu verschiedenen Zeiten. Aehnliches kommt bei Tieren vor. Werden die männlichen Geschlechtszellen früher als die weiblichen reif, so liegt Proterandrie vor, im umgekehrten Fall Proterogynie. Letztere in erweitertem Sinn, insofern als es sich dabei nicht um die Geschlechtsprodukte sondern um die beiden Geschlechter selbst handelt, - ich gebe eine Beschreibung, da ich in der Literatur nichts davon erwähnl finde - hatte ich im vergangenen Jahr zu beobachten Gelegenheit.

Am 1. 1. 12 nahm ich von einer Tour auf die Muthspitze bei Meran von den vielen Prozessionsspinnernestern (von Cnethocampa pityocampa Schiff.) an den Kiefern jener Gegend ein kleineres mit nach Hause. Wie sich später herausstellte, barg es ungefähr 60 Stück Raupen. Einige befanden sich im warmen Sonnenschein ausserhalb des Nestes. Deshalb fütterte ich sie im mässig warmen Zimmer sogleich mit Kiefernnadeln. Das alte Nest wurde verlassen; es war mit Kot und Leichen angefüllt. Alsbald wurde mit dem Bau eines neuen begonnen. Anfang Mai waren die Tiere erwachsen und suchten sich nach einigen Tagen feierlicher Prozession zu vergraben. Die Prozessionsspinner verpuppen sich bekanntlich in einem gemeinsamen Nest unter der Erde. Leider konnte ich damals der Sache nicht die nötige Aufmerksamkeit schenken und so kam es, dass ich nur einen geringen Prozentsatz Puppen erhielt. Viele Raupen vertrockneten, viele Puppen waren verkrüppelt, weil sie nicht die nötige Verpuppungsgelegenheit vorgefunden hatten. Bemerkens-